January 19, 2010

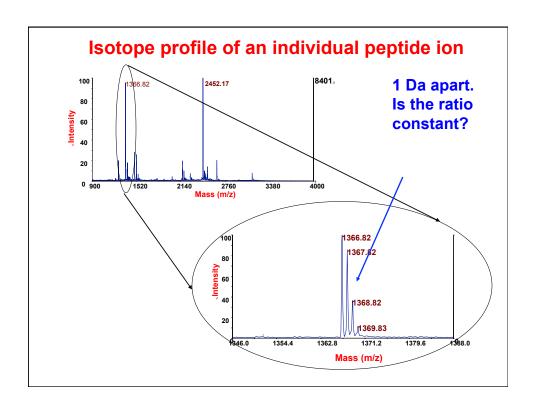
Isotopes and mass spectrometry - dawn of history to today

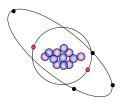
Stephen Barnes, PhD

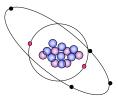
Department of Pharmacology & Toxicology University of Alabama at Birmingham 934-7117; sbarnes@uab.edu

Early History of Mass Spec

1897 Rutherford discovers the electron (cathode rays)


 1919 Aston using a mass spectrograph shows that Neon with a non-integer MW (20.2 Da) is composed of two isotopes, ²⁰Ne and ²²Ne


http://www.asms.org/Publications/Historical/HistoryofMassSpectrometry/tabid/94/Default.aspx


Mass spectrometry and nuclear war

- 1935 Dempster discovers ²³⁵U, the uranium isotope first used for a nuclear fission (atom) bomb
- 1941-5 Manhattan project
 - Mass spectrometry, one of three methods used to isolate ²³⁵U
- Bainbridge's careful measurement of masses of the elements revealed that hydrogen was heavier than predicted
 - This led to the concept that fusion of four H atoms to form He would result in the loss of mass in the form of energy - from Einstein, E = mc², i.e., a whole bunch!
 - Predicted mass for helium = 4.03298 vs actual of 4.02602
 - $\Delta = 0.00695$

Elements

Carbon-12

6 protons

6 neutrons

6 electrons

Carbon-13

6 protons 7 neutrons

6 electrons

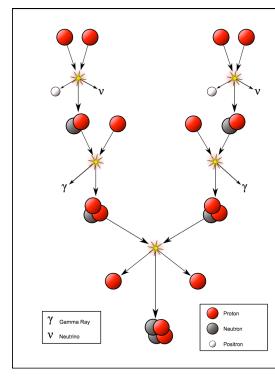
Carbon-14

6 protons 8 neutrons

6 electrons

Stable Stable

Unstable


Neutron decays to produce a proton, a β -particle and an antineutrino - ^{14}C becomes ^{14}N

Naturally occurring isotopes

Stable isotopes of the most abundant elements found in biological materials

Element	Mass	Abundance
Н	1.0078	99.985%
	2.0141	0.015%
С	12.0000	98.89%*
	13.0034	1.11%*
N	14.0031	99.64%*
	15.0001	0.36%*
0	15.9949	99.76%*
	16.9991	0.04%*
	17.9992	0.20%*
S	31.9721	94.93%*
3	32.9715	0.76%*
	33.9679	4.29%*
	35.9671	0.02%*

*Varies according to its source

Formation of helium

The first step involves the fusion of two hydrogen nuclei ¹H (protons) into deuterium, releasing a positron and a neutrino as one proton changes into a neutron.

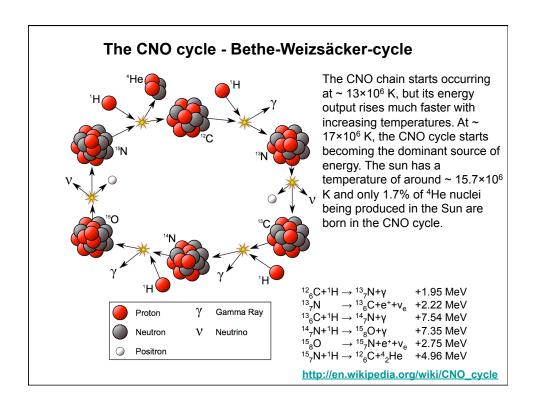
$${}^{1}H + {}^{1}H \rightarrow {}^{2}{}_{1}D + e^{+} + v_{e} + 0.42 \text{ MeV}$$

This first step is extremely slow, both because the protons have to tunnel through the Coulomb barrier and because it depends on weak interactions.

The positron immediately annihilates with an electron, and their mass energy is carried off by two gamma ray photons.

$$e^- + e^+ \rightarrow 2 \gamma + 1.02 \text{ MeV}$$

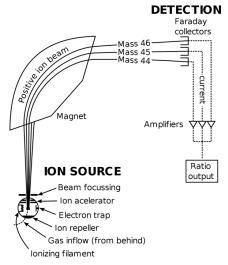
After this, the deuterium produced in the first stage can fuse with another hydrogen to produce a light isotope of helium. ³He:


2
₁D + 1 H \rightarrow 3 ₂He + γ + 5.49 MeV

From here there are three possible paths to generate helium isotope ⁴He. In pp I helium-4 comes from fusing two of the helium-3 nuclei produced; the pp II and pp III branches fuse ³He with a pre-existing ⁴He to make Be. In the Sun, branch pp I takes place with a frequency of 86%, pp II with 14% and pp III with 0.11%. There is also an extremely rare pp IV branch.

http://en.wikipedia.org/wiki/Nuclear_fusion

The ¹²C/¹³C ratio


- 12C was born in the inferno of stars from the triple fusion of 4He nuclei
- ¹³C is present in varying ratios to ¹²C among different stars and galaxies
- Carbon is present in interstellar space as CN and CO, and as methane and other hydrocarbons in planets
 - Thaolins are in the atmosphere of the moon Titan - future source of life?

Terrestial ¹²C/¹³C ratio

- On average there is 1.11% of ¹³C amongst the total carbon on Earth
- Carbon is present in many forms accessible to synthetic and biosynthetic processes - mostly starting from CO₂
- CO₂ is in the atmosphere, in the sea as HCO₃-, in the soil as carbonates, and as organic intermediates
 - 12C and ¹³C partition differently in each of these environments due to physical effects
 - Compounds have different ¹²C/¹³C ratios

Isotope ratio mass spectrometer

http://en.wikipedia.org/wiki/lsotope_ratio_mass_spectrometry

Isotope ratio mass spectrometry

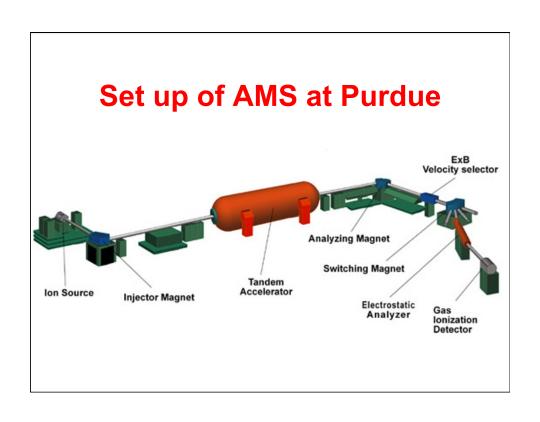
- Used for ¹³C/¹²C, ¹⁵N/¹⁴N, ¹⁸O/¹⁶O
- Carbon compounds are converted to CO₂
- Low mass range 0-150 m/z
- Sector instrument
- Very sensitive
- Very accurate measurement of mass
- 13C/12C ratio can vary from 0.972% to 1.160%
- PeeDee standard has ¹³C/¹²C ratio of 1.12372%

Fixation of CO₂ as organic carbon

- RuBisCO enzyme complex in plants
 - Converts CO₂ to sugars
 - Prefers ¹²C to ¹³C
- Plants take in CO₂ through stomata
 - Two models
 - Sponge divers (intermittent breathing)
 - These would sample all the isotopic forms of CO₂
 - Swimmers on surface (frequent breathing)
 - These would selectively take in ¹²CO₂

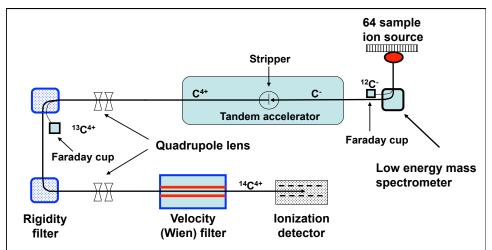
¹²C/¹³C ratio in plants

- The ¹³C content would be higher in plants that held their breath like the divers
 - i.e., the stomata were open less frequently
- Drought-resistant wheat strains have a higher ¹³C/¹²C ratio
 - This is a marker for selection of droughtresistant strains, important in the coming global warming


Athletes who use synthetic testosterone

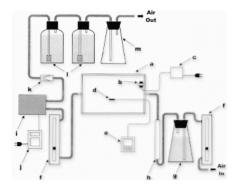
- Synthetic testosterone is made from phytosterol percursors, typically derived from wild yams or soy.
- Those are both warm-climate C3 plants, which take up atmospheric carbon dioxide by a different route than temperate-zone C4 plants, leading to noticeably different isotope ratios.
- The typical Western industrial-country diet is derived from a mixture of C3 and C4 stocks, so the appearance of testosterone with a C3-plant isotopic profile is usually diagnostic.

The ultimate mass spectrometer



Accelerator mass spectrometer

10 GeV AMS at LLNL



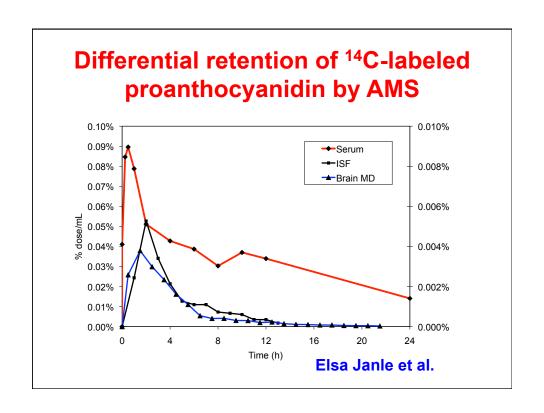
lons (C) are generated by a Cs ion beam. The ^{12}C ions are removed by a low energy mass spectrometer (note ^{14}N does not form ions). The remaining ions are accelerated and on passage through the gold foil stripper form C^{4+} ions. The ions are separated based on momentum, thereby measuring the $^{13}C^{4+}$ ions. The ions are further selected for their m/z values in the Rigidity filter, and velocity in the Wien filter. They are finally measured using a multi-anode gas-ionization detector. Approximately 1% of the ^{14}C ions generated are detected. Sensitivity is ~10 attomoles of ^{14}C from mg sized samples.

Sensitivity of ¹⁴C-AMS

- If one carbon atom is incorporated into a compound, then the specific activity is ~50 μC_i/μmol
- The human body naturally contains 50-90 nCi of radioactivity – therefore, a 50 nC_i dose is reasonable and small compared to most clinical studies
- 50 nCi is 1 nmol (10⁻⁹ mole)
- AMS can measure 1 ¹⁴C atom in 10¹⁵ carbon atoms, or 10 attomoles (10⁻¹⁷ moles) – 10⁻⁸ of the dose
- For a 70 kg human, 1 mg of tissue represents 1.4 x 10⁻⁵.
- If distributed evenly, the S/N is 700:1

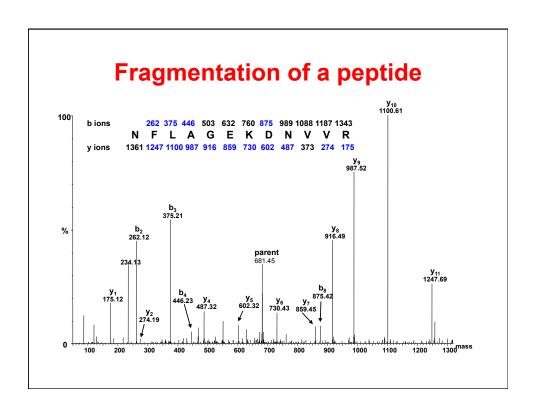
¹⁴C-polyphenols by metabolic labeling

Plant cells incubated with ¹⁴C-labeled sucrose in a closed system


¹⁴C-labeled polyphenols extracted and fractionated

50 nCi of 14 C-labeled polyphenol(s) is 1.11 x 105 dpm or 1 x 109 mol (0.3 μ g)

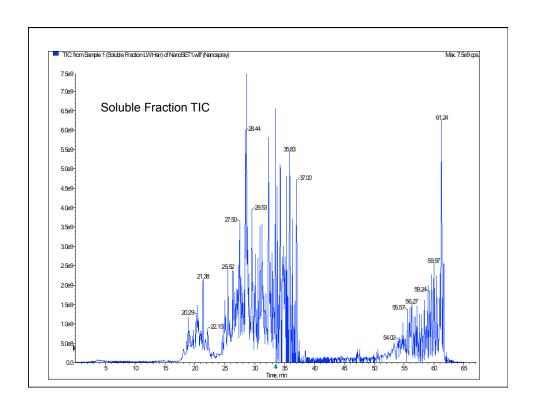
Let's suppose that 0.1% of the dose is absorbed into the brain, then that is 111 dpm, 0.3 ng or 1 x 10⁻¹²


For a 3 g rat brain, then 3 mg is 0.11 dpm, 0.3 pg or 1 x 10⁻¹⁵ mol

The detection limit for ¹⁴C using AMS is 1 x 10⁻¹⁷ mol, i.e., S/N is 100:1

Can isotope ratios be ascertained for compounds?

- Conventional isotope ratio measurements are based on converting the carboncontaining compounds to CO2
- Given the improvements in mass spectrometry, could we investigate the isotope ratios of peptides and deduce the underlying ¹³C/¹²C ratio?



Expected isotope abundances

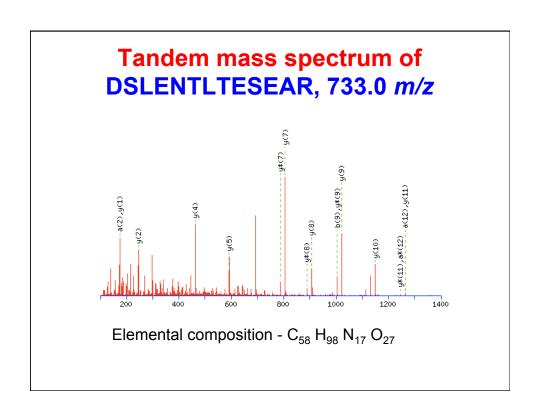
- x is the fraction of carbon atoms that are ¹²C
- y is the fraction of carbon atoms that are ¹³C
- For 1 carbon, the distribution is x;y
- For 2 carbons, x²;2xy;y²
- Using the binomial expansion
 - For n carbons, x^n ; $nx^{(n-1)}y$; $(\Sigma n-1)^*x^{(n-2)}y^2$,.....
 - xn are all 12C; for the next isotope peak there is one 13C
 - The ratio (r) of those first two peaks = ny/x
 - But x+y=1, so x=1-y, hence r = ny/(1-y) and r-ry=ny
 - Further, y(n+r)=r, and therefore y = r/(n+r)

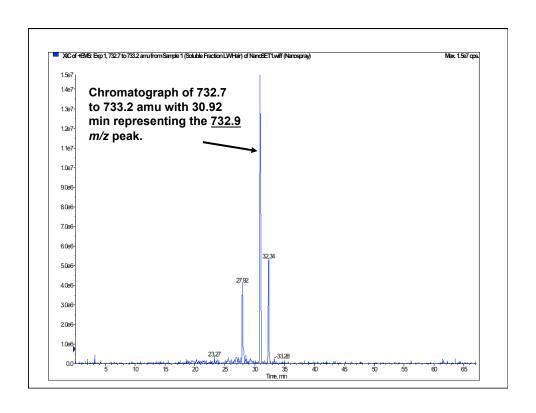
Calculating the ¹³C/¹²C ratio in keratin peptides

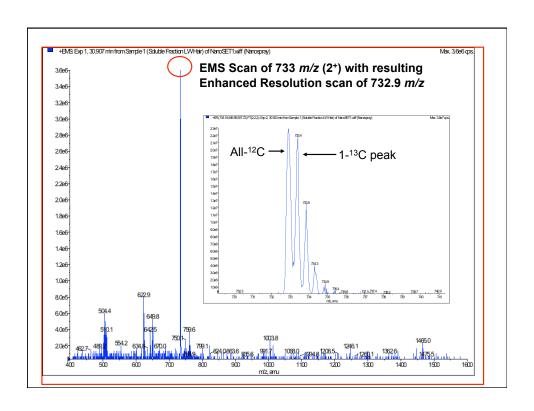
- Observe peptides with clean isotope profiles
- Identify the peptide from their MS/MS spectra
 - Determine the number (n) of carbon atoms in the peptide
- Calculate the areas under the observable isotope peaks
- Estimate the ¹³C/¹²C ratio using the correction for n

Partial list of proteins in hair souble fraction by LC-tandem MS

```
User : Email :
Email :
Email :
Email :
Esarch title :
D:\Analyst Data\Projects\FAS training april2005\Data\Barnes_Stephen\010209\NanoSET1.wiff (sample number 1)


MS data file :
D:\Database :
C\DoCUME-1\WASSSF-1\LOCALS-1\Temp\masl916.tmp
Database :
NBTnr 2007/9927 (5515994 sequences) 1911975371 residues)


Taxonomy :
HOme sapiens (human) (194674 sequences)
Timestamp : 2 Jan 2009 at 23:09:26 GMT


Significant hits:

significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significant hits:
significan
```

```
gi 14917117
                    Mass: 47166
                                  Score: 1035 Queries matched: 30
  keratin 33A [Homo sapiens]
Check to include this hit in error tolerant search or archive report
        Observed
                  Mr(expt) Mr(calc)
           639.38
                     638.37
                               638.33
                                         0.04
                                                     17
                                                         2.9e+002
                                                                     4 A.SYLEK.V
                     822.46
                                         0.01
                                                                       R.LASYLEK.V
   249
          823.47
                               822.45
                                                     27
                                                                44
   296
                                                                        Y.QAEIIELR.R
   307
           494.82
                     987.62
                               987.52
                                         0.10
                                                0
                                                     27
                                                                       K.TIEELQQK.I
           999.73
                     998.72
   314
                               998.58
                                         0.14
                                                0
                                                    (24)
                                                                75
                                                                       R.LVVQIDNAK.L
           500.64
           505.32
                    1008.62
                              1009.51
                                        -0.88
                                                     32
                                                                       K.YETELSLR.Q
   386
           566.90
                    1131.79
                              1131.60
                                         0.19
                                                     52
                                                              0.14
                                                                       R. ILDELTLCR. S
          577.43
                    1152.84
                              1152.52
                                                                       K.ETMQFLNDR.L
                                         0.32
                                                     (21) 1.5e+002
   397
   404
   411
          1186.64
                    1185.64
                              1185.60
                                         0.04
                                                               11
                                                                       R.DNAELENLIR.E
                    1185.71
   412
          593.86
                              1185.60
                                         0.11
                                                     39
                                                              3.2
                                                                       R.DNAELENLIR.E
   417
           598.40
                    1194.79
                                         0.19
                                                            0.0024
                                                                       R.YSSQLSQVQR.L
           599.28
                    1196.56
                              1196.55
                                         0.01
                                                                        R.LECEINTYR.S
                                                              0.19
   427
435
           609.83
                    1217.64
                              1217.61
                                         0.03
                                                                       R.SDLEAOVESLK.E
                                        -0.76
                                                      47
          619.95
                    1237.89
                              1238.65
                                                                       R.TKYETELSLR.Q
                                                              0.43
           620.87
                    1239.73
                              1238.60
                    1243.82
1287.88
                                                     34
44
   439
           622.92
                              1242.66
                                         1.16
                                                                       R.QLVESDINGLR.R
   457
          644.95
                              1287.70
                                         0.19
                                                             0.85
                                                                       R.RILDELTLCR.S
   485
           684.38
                    1366.74
                              1366.66
                                         0.08
                                                                       K.QNHEQEVNTLR.C
           456.67
                    1366.98
                              1366.66
                                         0.32
                                                             0.078
                                                                        K.QNHEQEVNTLR.C
   507
           709.96
                    1417.91
                              1417.64
                                         0.27
                                                     63
                                                             0.013
                                                                       K.STGPCISNPCGLR.A
   521
           733.01
                    1464.00
                              1463.67
                                         0.33
                                                             0.013
                                                                       R.DSLENTLTESEAR.Y
                    1464.77
   523
           489.32
                    1464.95
                              1464.73
                                         0.22
                                                    (16) 5.5e+002
                                                                       R.SQYEALVETNRR.E
                    1503.83
                                                            0.0083
   538
           752.92
                              1503.77
                                         0.06
                                                     65
                                                                        R.ONOEYOVLLDVR.A
                    1533.27
                              1533.83
                                                                     1 N.ALEIELQAQHNLR.D
                                                             0.91
```


Estimating ¹³C content

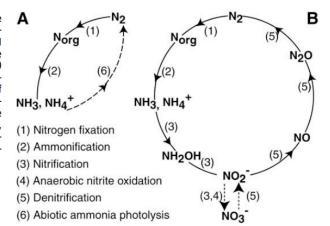
- The ratio of the 1- 13 C and 12 C isotope peak heights is 2.18/2.28, i.e., r = 0.95614
- Y, the fraction of the carbons that are ¹³C, is r/(n+r)
- Y = 0.95614/(58 + 0.95614)
- Y = 0.015947, i.e. 1.59%

Mass differences for H, C, N and O isotopes

- ${}^{2}H {}^{1}H = 1.0063 Da$
- ${}^{13}\text{C} {}^{12}\text{C} = 1.0031 \text{ Da}$
- 15 N 14 N = 0.9970 Da
- $^{17}O ^{16}O = 1.0042 Da$
- Therefore, ¹³C and ¹⁵N will be different by -0.0061 Da and ¹³C and ¹⁷O by 0.0011 Da
- The ²H and ¹³C difference would be 0.0032 Da, but only accounts for 1% of the apparent ¹³C difference

Stable isotopes of the most abundant elements found in biological materials

Element	Mass	Abundance
Н	1.0078	99.985%
	2.0141	0.015%
С	12.0000	98.89%*
	13.0034	1.11%*
N	14.0031	99.64%*
	15.0001	0.36%*
0	15.9949	99.76%*
	16.9991	0.04%*
	17.9992	0.20%*
S	31.9721	94.93%*
3	32.9715	0.76%*
	33.9679	4.29%*
	35.9671	0.02%*

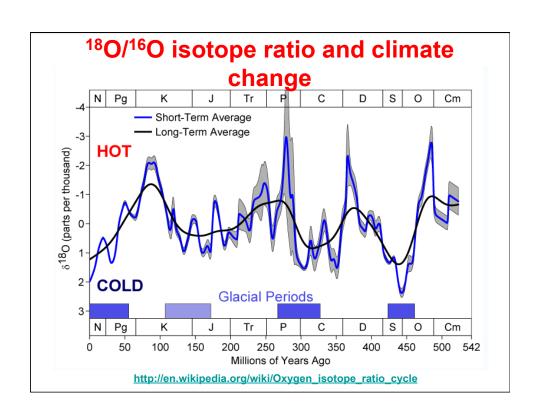

^{*}Varies according to its source

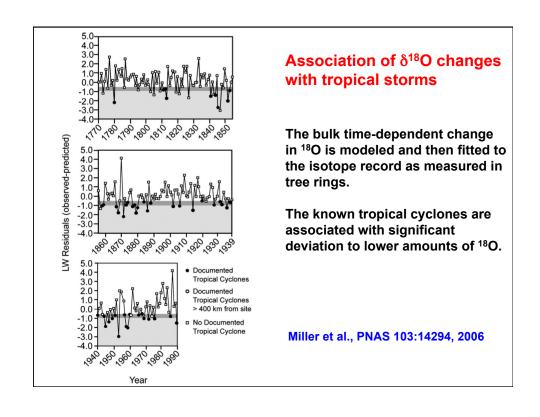
¹⁵N/¹⁴N ratio over the archaea periods

- Earth did not start with an oxygen atmosphere
 - Dominated by a N₂/NH₃/CN⁻ anerobic environment for first several billion years
 - First settlers on Earth were archaea bacteria
 - A nitrogen-fixing archaeon from a deep sea volcanic vent operates at 92°C

Processes leading to changing ¹⁵N/¹⁴N ratio

Fig. 2. Nitrogen cycle transformations. (**A**) Hypothesized anaerobic N cycle before Mount McRae δ^{15} N excursion and (**B**) hypothesized suboxic aerobic N cycle at peak of Mount McRae δ^{15} N excursion. The broken line indicates abiotic processes, and the dotted line indicates plausible but unproven processes.

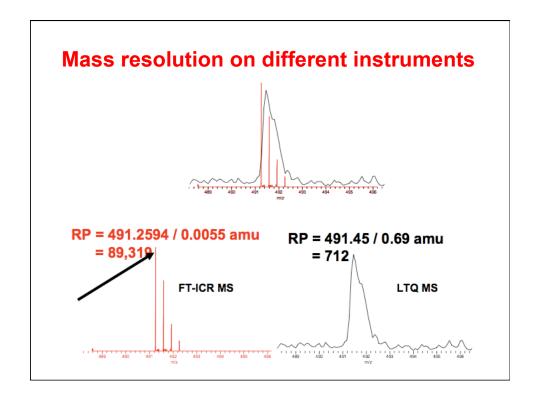



Examination of the ¹⁵N/¹⁴N ratio in 2.5 billion year old Mount McRae Shale in W. Australia reveals a transient period of nitrification and implies that nitrifying and denitrifying bacteria were already present

Garvin et al., Science 323, 1045 (2009)

¹⁸O/¹⁶O isotope ratio

- Evaporation of H₂¹⁸O requires more energy than H₂¹⁶O
 - Water vapor is enriched in ¹⁶O whereas ice is enriched in ¹⁸O
 - Measurement of ¹⁸O/¹⁶O ratio in ice cores allows scientists to estimate the temperature over the past millions of years
 - As the temperature decreases, the ¹⁸O/¹⁶O ratio falls
 - Hurricanes cause a severe depletion of ¹⁸O this can be detected in trees
 - Calcite (shells) takes one O from water and parallels the ice rcord



¹⁵N and the ¹³C₁ isotope abundance

- It appears that there is a contribution from the ¹⁵N and ¹⁷O isotopes
 - For 15 N it is estimated as (0.36/1.11)/(58/17) = 0.09506 in r
 - Thus r* = 0.86108 and y* = 0.86106/(58 + 0.86104), i.e., 0.014629, or 1.4629%

Conclusions so far

- The method using comparison of the isotope peaks of a peptide is not sufficiently good (yet)
- The calculations used in this first approach employed peak heights
 - It would be better if we could deconvolute the overlapping peaks to obtain estimate of the peak areas
 - Better still to resolve the peaks entirely and separate the isotopic contaminants

Can high resolution FT-ICR-MS resolve the ¹³C, ¹⁵N isotope contributions?

- Δ ¹³C-¹²C = 1.0034 Da
- Δ ¹⁵N-¹⁴N = 0.9970 Da
- Therefore, the difference between a ¹³C and ¹⁵N contribution is 0.0064 Da
- The m/z of the doubly charged keratin peptide is 733
- Resolution needed is 2 x 733/0.0064 = 229,063
- Achievable on 7T FT-ICR instrument if the FID is observed for several seconds